Class Notes

Zeroth Law of Thermodynamics:

\[PV = \text{const} \cdot T \]

First Law - energy is conserved.

Ideal gas - particles are not interacting.

Average pressure:

\[P = F_{\text{pist}} = \frac{\Delta V}{A \cdot \Delta t} = 2V_x \]

\[V = L \cdot A = \text{Vol.} \]

\[PV = nRT \]

\[\frac{PV}{n} = \frac{mV_x^2}{V} = \frac{mV_x^2}{\text{Vol}} = \text{empirical gas law} \]

\[N_{\text{Avagadro}} = R = 8.31 \times 10^3 \]

\[R_0 = 1.38 \times 10^{-23} \text{ J/K} \]

\[\frac{1}{2} m v^2 = \frac{1}{2} k_B T \]

Equipartition of Energy \[\rightarrow KE_{\text{total}} = \frac{3}{2} k_B T \]

Thermal Energy of an ideal gas \[\hat{E} = \frac{N f}{2} \frac{1}{2} k_B T \]

\[N = \# \text{ of gas molecules} \]

\[f = \text{d.o.f.} \]

\[\hat{E} \text{ only dependent on temperature} \]

\[E = E_0 + 2(r - r_0)^2 \]